Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Infectious Diseases and Immunity ; 2(2):65-73, 2022.
Article in English | Scopus | ID: covidwho-2212971

ABSTRACT

Background:Interferon kappa (IFN-κ) is a type I interferon (IFN-I) that inhibits virus replication by evoking interferon-stimulated genes (ISGs). However, as an evolutionarily ancient interferon, IFN-κ may function differently from the later emerged interferon-α and β.Methods:Conventional molecular biology methods were used to determine the localization of IFN-κ and its structure and function. In addition, we employed RT-PCR, western blot, and RNA-Seq technologies to characterize the ISGs expression profile and antiviral activities exerted by IFN-κ or IFN-α2.Results:Human IFN-κ exists in two forms upon ectopic expression, one located on the cell membrane and the other secreted outside the cells. The membrane-anchored IFN-κ showed the ability to induce ISGs and curtail RNA virus replication, whereas the secreted IFN-κ failed to do so. Structural analyses indicated that 1-27aa at the N-terminus was the signal peptide, and 28-37aa was predicted as the transmembrane region. However, our data demonstrated that both of them were not associated with membrane localization of IFN-κ;the former influenced the expression and secretion of IFN-κ, and the latter had an impact on the induction of ISGs. In addition, prokaryotic purified soluble mature human IFN-κ was also capable of inducing ISGs and inhibiting RNA virus replication. Importantly, human IFN-κ induced a faster ISG response but with a lower intensity and a shorter half-life than the response of IFN-α2. In contrast, IFN-α2 started to function later but was stronger and more durable than IFN-κ.Conclusions:Human IFN-κ-induced ISG response and inhibited respiratory RNA virus replication dependent on cell-to-cell interactions. In addition, compared with IFN-α2, IFN-κ exerted effects more rapidly in the early phase, with less intensity and a shorter half-life. Therefore, IFN-κ may constitute the first line of IFN-I against respiratory virus infections. © 2022 Journal of Bone and Joint Surgery Inc.. All rights reserved.

2.
Viruses ; 14(9)2022 09 08.
Article in English | MEDLINE | ID: covidwho-2055391

ABSTRACT

Mastomys natalensis is the natural host of various arenaviruses, including the human-pathogenic Lassa virus. Homologous arenaviruses, defined here as those having M. natalensis as a natural host, can establish long-lasting infection in M. natalensis, while these animals rapidly clear arenaviruses having another rodent species as a natural host (heterologous viruses). Little is known about the mechanisms behind the underlying arenavirus-host barriers. The innate immune system, particularly the type I interferon (IFN) response, might play a role. In this study, we developed and validated RT-PCR assays to analyse the expression of M. natalensis interferon-stimulated genes (ISGs). We then used these assays to study if homologous and heterologous viruses induce different IFN responses in M. natalensis cells. Infection experiments were performed with the homologous Lassa and Morogoro viruses and the related but heterologous Mobala virus. Compared to the direct induction with IFN or Poly(I:C), arenaviruses generally induced a weak IFN response. However, the ISG-expression profiles of homologous and heterologous viruses were similar. Our data indicate that, at least in M. natalensis cells, the IFN system is not a major factor in the virus-host barrier for arenaviruses. Our system provides a valuable tool for future in vivo investigation of arenavirus host restrictions at the level of the innate immune response.


Subject(s)
Arenaviridae Infections , Arenavirus , Interferon Type I , Animals , Arenavirus/physiology , Humans , Immunity, Innate , Murinae , Tanzania
3.
J Transl Autoimmun ; 5: 100154, 2022.
Article in English | MEDLINE | ID: covidwho-1783601

ABSTRACT

The clinical and immunological spectrum of acute and post-active COVID-19 syndrome overlaps with criteria used to characterize autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Indeed, following SARS-Cov2 infection, the innate immune response is altered with an initial delayed production of interferon type I (IFN-I), while the NF-kappa B and inflammasome pathways are activated. In lung and digestive tissues, an alternative and extrafollicular immune response against SARS-Cov2 takes place with, consequently, an altered humoral and memory T cell response leading to breakdown of tolerance with the emergence of autoantibodies. However, the risk of developing severe COVID-19 among SLE and RA patients did not exceed the general population except in those having pre-existing neutralizing autoantibodies against IFN-I. Treatment discontinuation rather than COVID-19 infection or vaccination increases the risk of developing flares. Last but not least, a limited number of case reports of individuals having developed SLE or RA following COVID-19 infection/vaccination have been reported. Altogether, the SARS-Cov2 pandemic represents an unique opportunity to investigate the dangerous interplay between the immune response against infectious agents and autoimmunity, and to better understand the triggering role of infection as a risk factor in autoimmune and chronic inflammatory disease development.

4.
J Med Virol ; 94(1): 63-81, 2022 01.
Article in English | MEDLINE | ID: covidwho-1544343

ABSTRACT

Although significant research has been done to find effective drugs against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), no definite effective drug exists. Thus, research has now shifted towards immunomodulatory agents other than antivirals. In this review, we aim to describe the latest findings on the role of type I interferon (IFN)-mediated innate antiviral response against SARS-CoV-2 and discuss the use of IFNs as a medication for COVID-19. A growing body of evidence has indicated a promoting active but delayed IFNs response to SARS-CoV-2 and Middle East respiratory syndrome coronavirus in infected bronchial epithelial cells. Studies have demonstrated that IFNs' administration before the viral peak and the inflammatory phase of disease could offer a highly protective effect. However, IFNs' treatment during the inflammatory and severe stages of the disease causes immunopathology and long-lasting harm for patients. Therefore, it is critical to note the best time window for IFNs' administration. Further investigation of the clinical effectiveness of interferon for patients with mild to severe COVID-19 and its optimal timing and route of administration can be beneficial in finding a safe and effective antiviral therapy for the COVID-19 disease.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Interferon Type I/therapeutic use , SARS-CoV-2/drug effects , Humans , Immunity, Innate/immunology , Immunologic Factors/therapeutic use , Immunomodulation/drug effects
5.
Therapie ; 76(4): 335-345, 2021.
Article in English | MEDLINE | ID: covidwho-894240

ABSTRACT

Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has emerged into a global health and economic menace. Amidst the COVID-19 turmoil, recent failures/uncertain outcomes in clinical trials involving the anti-malarial (hydroxychloroquine), anti-viral (remdesivir) or the combination of anti-malarial/antibiotic (hydroxychloroquine/azithromycin) regimens have predisposed the physicians to distrust these "highly-touted" drugs for COVID-19. In this milieu, immunotherapy might be a credible modality to target or modify specific/non-specific immune responses that interfere with the survival of intracellular pathogens. This scientific review throws light on the epidemiology of COVID-19, its pathogenesis and the current clinical scenario of immunotherapeutics including convalescent plasma (CP), type-1 interferons (IFN-I) and human monoclonal antibodies (mAbs) to combat COVID-19. The treatment outcomes underscore that immunotherapy might be a reliable tool to assuage COVID-19-associated immunopathology. However, specific patient pool studies are warranted to ascertain the precise (re)purposing of immunotherapeutics for COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Immunotherapy , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/virology , Humans , Immunization, Passive , Interferon Type I/therapeutic use , SARS-CoV-2/immunology , Treatment Outcome , COVID-19 Serotherapy
6.
Nutrition ; 79-80: 110967, 2020.
Article in English | MEDLINE | ID: covidwho-704014

ABSTRACT

The severe form of coronavirus disease 19 (COVID-19) is characterized by cytokine storm syndrome (CSS) and disseminated intravascular coagulation (DIC). Diabetes, obesity, and hypertension have, as minor common denominators, chronic low-grade inflammation and high plasma myeloperoxidase levels, which could be linked to pulmonary phagocytic hyperactivation and CSS. The hyperactivation of M1 macrophages with a proinflammatory phenotype, which is linked to aerobic glycolysis, leads to the recruitment of monocytes, neutrophils, and platelets from circulating blood and plays a crucial role in thrombo-inflammation (as recently demonstrated in COVID-19) through the formation of neutrophil extracellular traps and monocyte-platelet aggregates, which could be responsible for DIC. The modulation of glucose availability for activated M1 macrophages by means of a eucaloric ketogenic diet (EKD) could represent a possible metabolic tool for reducing adenosine triphosphate production from aerobic glycolysis in the M1 macrophage phenotype during the exudative phase. This approach could reduce the overproduction of cytokines and, consequently, the accumulation of neutrophils, monocytes, and platelets from the blood. Second, an EKD could be advantageous for the metabolism of anti-inflammatory M2 macrophages because these cells predominantly express oxidative phosphorylation enzymes and are best fed by the oxidation of fatty acids in the mitochondria. An EKD could guarantee the availability of free fatty acids, which are an optimal fuel supply for these cells. Third, an EKD, which could reduce high lactate formation by macrophages due to glycolysis, could favor the production of interferon type I, which are inhibited by excessive lactate production. From a practical point of view, the hypothesis, in addition to being proven in clinical studies, must obviously take into account the contraindications of an EKD, particularly type 1 or 2 diabetes treated with drugs that can cause hypoglycemia, to avoid the risk for side effects of the diet.


Subject(s)
COVID-19/complications , Cytokines/metabolism , Diet, Carbohydrate-Restricted , Hyperglycemia/metabolism , Inflammation/prevention & control , Ketosis , Macrophages/metabolism , Blood Glucose/metabolism , Blood Platelets , COVID-19/metabolism , Diabetes Mellitus , Disseminated Intravascular Coagulation , Energy Intake , Glycolysis , Humans , Inflammation/etiology , Inflammation/metabolism , Interferon Type I/metabolism , Ketones/metabolism , Lactic Acid/metabolism , Monocytes , Neutrophils , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL